- Filename: group-theory-and-physics.
- ISBN: 0521558859
- Release Date: 1995-09-07
- Number of pages: 429
- Author: S. Sternberg
- Publisher: Cambridge University Press

This book is an introduction to group theory and its application to physics. The author considers the physical applications and develops mathematical theory in a presentation that is unusually cohesive and well-motivated. The book discusses many modern topics including molecular vibrations, homogeneous vector bundles, compact groups and Lie groups, and there is much discussion of the group SU(n) and its representations, which is of great significance in elementary particle physics. The author also considers applications to solid-state physics. This is an essential resource for senior undergraduates and researchers in physics and applied mathematics.

- Filename: group-theory-in-physics.
- ISBN: 9789971966560
- Release Date: 1985
- Number of pages: 344
- Author: Wu-Ki Tung
- Publisher: World Scientific

- Filename: group-theory-in-physics.
- ISBN: 0080532667
- Release Date: 1997-07-11
- Number of pages: 349
- Author: John F. Cornwell
- Publisher: Academic Press

This book, an abridgment of Volumes I and II of the highly respected Group Theory in Physics, presents a carefully constructed introduction to group theory and its applications in physics. The book provides anintroduction to and description of the most important basic ideas and the role that they play in physical problems. The clearly written text contains many pertinent examples that illustrate the topics, even for those with no background in group theory. This work presents important mathematical developments to theoretical physicists in a form that is easy to comprehend and appreciate. Finite groups, Lie groups, Lie algebras, semi-simple Lie algebras, crystallographic point groups and crystallographic space groups, electronic energy bands in solids, atomic physics, symmetry schemes for fundamental particles, and quantum mechanics are all covered in this compact new edition. Key Features * Covers both group theory and the theory of Lie algebras * Includes studies of solid state physics, atomic physics, and fundamental particle physics * Contains a comprehensive index * Provides extensive examples

- Filename: an-introduction-to-tensors-and-group-theory-for-physicists.
- ISBN: 9783319147949
- Release Date: 2015-03-11
- Number of pages: 305
- Author: Nadir Jeevanjee
- Publisher: Birkhäuser

The second edition of this highly praised textbook provides an introduction to tensors, group theory, and their applications in classical and quantum physics. Both intuitive and rigorous, it aims to demystify tensors by giving the slightly more abstract but conceptually much clearer definition found in the math literature, and then connects this formulation to the component formalism of physics calculations. New pedagogical features, such as new illustrations, tables, and boxed sections, as well as additional “invitation” sections that provide accessible introductions to new material, offer increased visual engagement, clarity, and motivation for students. Part I begins with linear algebraic foundations, follows with the modern component-free definition of tensors, and concludes with applications to physics through the use of tensor products. Part II introduces group theory, including abstract groups and Lie groups and their associated Lie algebras, then intertwines this material with that of Part I by introducing representation theory. Examples and exercises are provided in each chapter for good practice in applying the presented material and techniques. Prerequisites for this text include the standard lower-division mathematics and physics courses, though extensive references are provided for the motivated student who has not yet had these. Advanced undergraduate and beginning graduate students in physics and applied mathematics will find this textbook to be a clear, concise, and engaging introduction to tensors and groups. Reviews of the First Edition “[P]hysicist Nadir Jeevanjee has produced a masterly book that will help other physicists understand those subjects [tensors and groups] as mathematicians understand them... From the first pages, Jeevanjee shows amazing skill in finding fresh, compelling words to bring forward the insight that animates the modern mathematical view...[W]ith compelling force and clarity, he provides many carefully worked-out examples and well-chosen specific problems... Jeevanjee’s clear and forceful writing presents familiar cases with a freshness that will draw in and reassure even a fearful student. [This] is a masterpiece of exposition and explanation that would win credit for even a seasoned author.” —Physics Today "Jeevanjee’s [text] is a valuable piece of work on several counts, including its express pedagogical service rendered to fledgling physicists and the fact that it does indeed give pure mathematicians a way to come to terms with what physicists are saying with the same words we use, but with an ostensibly different meaning. The book is very easy to read, very user-friendly, full of examples...and exercises, and will do the job the author wants it to do with style.” —MAA Reviews

- Filename: elements-of-group-theory-for-physicists.
- ISBN: 812240975X
- Release Date: 1997
- Number of pages: 305
- Author: A. W. Joshi
- Publisher: New Age International

The Mathematical Study Of Group Theory Was Initiated In The Early Nineteenth Century By Such Mathematicians As Gauss, Cauchy, Abel, Hamilton, Galois, Cayley, And Many Others. However, The Advantages Of Group Theory In Physics Were Not Recognized Till 1925 When It Was Applied For Formal Study Of Theoretical Foundations Of Quantum Mechanics, Atomic Structures And Spectra By, To Name A Few, H A Bethe, E P Wigner, Etc. It Has Now Become Indispensable In Several Branches Of Physics And Physical Chemistry.Dr. Joshi Develops The Mathematics Of Group Theory And Then Goes On To Present Its Applications To Quantum Mechanics, Crystallography, And Solid State Physics. For Proper Comprehension Of Representation Theory, He Has Covered Thoroughly Such Diverse But Relevant Topics As Hilbert Spaces, Function Spaces, Operators, And Direct Sum And Product Of Matrices. He Often Proceeds From The Particular To The General So That The Beginning Student Does Not Have An Impression That Group Theory Is Merely A Branch Of Abstract Mathematics. Various Concepts Have Been Explained Consistently By The Use Of The C4V. Besides, It Contains An Improved And More General Proof Of The Schurs First Lemma And An Interpretation Of The Orthogonality Theorem In The Language Of Vector Spaces (Chapter 3).Throughout The Text The Author Gives Attention To Details And Avoids Complicated Notation. This Is A Valuable Book For Senior Students And Researchers In Physics And Physical Chemistry. A Thorough Understanding Of The Methodology And Results Contained In This Book Will Provide The Reader Sound Theoretical Foundations For Advanced Study Of Quantum Mechanics, Solid State Physics And Atomic And Particle Physics To Help Students A Flow-Chart Explaining Step By Step The Method Of Determining A Parallel-Running Example Illustrating The Procedure In Full Details Have Been Included. An Appendix On Mappings And Functions Has Also Been Added.

- Filename: group-theory-for-physicists.
- ISBN: 9789812771414
- Release Date: 2007
- Number of pages: 491
- Author: Zhongqi Ma
- Publisher: World Scientific

This textbook explains the fundamental concepts and techniques of group theory by making use of language familiar to physicists. Application methods to physics are emphasized. New materials drawn from the teaching and research experience of the author are included. This book can be used by graduate students and young researchers in physics, especially theoretical physics. It is also suitable for some graduate students in theoretical chemistry.

- Filename: group-theory-in-physics.
- ISBN: 9810204868
- Release Date: 1991
- Number of pages: 111
- Author: Michael Aivazis
- Publisher: World Scientific

This solutions booklet is a supplement to the text book 'Group Theory in Physics' by Wu-Ki Tung. It will be useful to lecturers and students taking the subject as detailed solutions are given.

- Filename: group-theory.
- ISBN: 9783540328971
- Release Date: 2007-12-13
- Number of pages: 582
- Author: Mildred S. Dresselhaus
- Publisher: Springer Science & Business Media

This concise, class-tested book was refined over the authors’ 30 years as instructors at MIT and the University Federal of Minas Gerais (UFMG) in Brazil. The approach centers on the conviction that teaching group theory along with applications helps students to learn, understand and use it for their own needs. Thus, the theoretical background is confined to introductory chapters. Subsequent chapters develop new theory alongside applications so that students can retain new concepts, build on concepts already learned, and see interrelations between topics. Essential problem sets between chapters aid retention of new material and consolidate material learned in previous chapters.

- Filename: group-theory-in-a-nutshell-for-physicists.
- ISBN: 0691162697
- Release Date: 2016-03-29
- Number of pages: 632
- Author: A. Zee
- Publisher:

Although group theory is a mathematical subject, it is indispensable to many areas of modern theoretical physics, from atomic physics to condensed matter physics, particle physics to string theory. In particular, it is essential for an understanding of the fundamental forces. Yet until now, what has been missing is a modern, accessible, and self-contained textbook on the subject written especially for physicists. Group Theory in a Nutshell for Physicists fills this gap, providing a user-friendly and classroom-tested text that focuses on those aspects of group theory physicists most need to know. From the basic intuitive notion of a group, A. Zee takes readers all the way up to how theories based on gauge groups could unify three of the four fundamental forces. He also includes a concise review of the linear algebra needed for group theory, making the book ideal for self-study. Provides physicists with a modern and accessible introduction to group theory Covers applications to various areas of physics, including field theory, particle physics, relativity, and much more Topics include finite group and character tables; real, pseudoreal, and complex representations; Weyl, Dirac, and Majorana equations; the expanding universe and group theory; grand unification; and much more The essential textbook for students and an invaluable resource for researchers Features a brief, self-contained treatment of linear algebra An online illustration package is available to professors Solutions manual (available only to professors)

- Filename: problems-solutions-in-group-theory-for-physicists.
- ISBN: 9812388338
- Release Date: 2004
- Number of pages: 464
- Author: Zhong-Qi Ma
- Publisher: World Scientific

This book is aimed at graduate students and young researchers in physics who are studying group theory and its application to physics. It contains a short explanation of the fundamental knowledge and method, and the fundamental exercises for the method, as well as some important conclusions in group theory. This book is also suitable for some graduate students in theoretical chemistry.

- Filename: group-theory-in-subnuclear-physics.
- ISBN: 0198517424
- Release Date: 1996
- Number of pages: 421
- Author: Fl Stancu
- Publisher: Oxford University Press on Demand

This book is a useful and accessible introduction to symmetry principles in particle physics. Concepts of group theory are clearly explained and their applications to subnuclear physics brought up to date. The book begins with introductions to both the types of symmetries known in physics and to group theory and representation theory. Successive chapters deal with the symmetric groups and their Young diagrams, braid groups, Lie groups and algebras, Cartan's classification of semi-simple groups, and the Lie groups most used in physics are treated in detail. Gauge groups are discussed, and applications to elementary particle physics and multiquark systems introduced throughout the book where appropriate. Many worked examples are also included. There is a growing interest in the quark structure of hadrons and in theories of particle interactions based on the principle of gauge symmetries. Students and researchers on theoretical physics will make great strides in their work with the ideas and applications found here.

- Filename: group-theory.
- ISBN: 9781139489645
- Release Date: 2010-05-13
- Number of pages:
- Author: Pierre Ramond
- Publisher: Cambridge University Press

Group theory has long been an important computational tool for physicists, but, with the advent of the Standard Model, it has become a powerful conceptual tool as well. This book introduces physicists to many of the fascinating mathematical aspects of group theory, and mathematicians to its physics applications. Designed for advanced undergraduate and graduate students, this book gives a comprehensive overview of the main aspects of both finite and continuous group theory, with an emphasis on applications to fundamental physics. Finite groups are extensively discussed, highlighting their irreducible representations and invariants. Lie algebras, and to a lesser extent Kac–Moody algebras, are treated in detail, including Dynkin diagrams. Special emphasis is given to their representations and embeddings. The group theory underlying the Standard Model is discussed, along with its importance in model building. Applications of group theory to the classification of elementary particles are treated in detail.

- Filename: group-theory-for-high-energy-physicists.
- ISBN: 9781466510647
- Release Date: 2016-04-19
- Number of pages: 230
- Author: Mohammad Saleem
- Publisher: Taylor & Francis

Although group theory has played a significant role in the development of various disciplines of physics, there are few recent books that start from the beginning and then build on to consider applications of group theory from the point of view of high energy physicists. Group Theory for High Energy Physicists fills that role. It presents groups, especially Lie groups, and their characteristics in a way that is easily comprehensible to physicists. The book first introduces the concept of a group and the characteristics that are imperative for developing group theory as applied to high energy physics. It then describes group representations since matrix representations of a group are often more convenient to deal with than the abstract group itself. With a focus on continuous groups, the text analyzes the root structure of important groups and obtains the weights of various representations of these groups. It also explains how symmetry principles associated with group theoretical techniques can be used to interpret experimental results and make predictions. This concise, gentle introduction is accessible to undergraduate and graduate students in physics and mathematics as well as researchers in high energy physics. It shows how to apply group theory to solve high energy physics problems.

- Filename: journal-of-group-theory-in-physics.
- ISBN: UOM:39015057374186
- Release Date: 1994
- Number of pages:
- Author:
- Publisher:

- Filename: group-theory-with-applications-in-chemical-physics.
- ISBN: 0521642507
- Release Date: 2005-10-18
- Number of pages: 485
- Author: Patrick W. M. Jacobs
- Publisher: Cambridge University Press

Group Theory is an indispensable mathematical tool in many branches of chemistry and physics. This book provides a self-contained and rigorous account on the fundamentals and applications of the subject to chemical physics, assuming no prior knowledge of group theory. The first half of the book focuses on elementary topics, such as molecular and crystal symmetry, whilst the latter half is more advanced in nature. Discussions on more complex material such as space groups, projective representations, magnetic crystals and spinor bases, often omitted from introductory texts, are expertly dealt with. With the inclusion of numerous exercises and worked examples, this book will appeal to advanced undergraduates and beginning graduate students studying physical sciences and is an ideal text for use on a two-semester course.